BACK PAPER: NUMERICAL COMPUTING

(1) $(6+6+6=18$ points) Write down the output of the following commands in octave.
(a) $\mathrm{x}=[532] ; \mathrm{A}=\operatorname{diag}\left(2^{*} \operatorname{ones}(1,4)\right)+\operatorname{diag}(\operatorname{ones}(1,3), 1)+\operatorname{diag}(\mathrm{x},-1) ; \operatorname{disp}(\mathrm{A}(1: 3,2: 4))$;
(b) $\mathrm{A}=\left[\begin{array}{lll}2 & 1 ; 4 & 3\end{array}\right] ; \mathrm{B}=\left[\begin{array}{lll}1 & 0 ; 0 & 1\end{array}\right]+\operatorname{diag}([45]) ; \operatorname{disp}(\mathrm{A} . * \mathrm{~B}) ; \operatorname{disp}(\mathrm{A} * \mathrm{~B})$;
(c) $\mathrm{c}=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$; $\mathrm{r}=\operatorname{polyval}(\mathrm{c},-1) ; \operatorname{disp}(\mathrm{r})$;
(2) $(5+6+7=18$ points) Describe what the following commands in octave do:
(a) linspace
(b) chol
(c) ode45
(3) $(4+4+10=18$ points) Write down a command or a short code to achieve the following goals:
(a) Display the plot of the function $f(x)=\sin (x)+e^{x}$ for x between $-\pi$ and π.
(b) Create a $n \times 2$ random matrix.
(c) Given a $n \times 2$ matrix A, write a short code which will give a polynomial which interpolates the n points whose co-ordinates are given by the rows of A.
(4) (10 points) The function $y=\frac{x}{c_{1} x+c_{2} e^{x}}$ can be transformed into a linear relationship $z=c_{1}^{\prime} w+c_{2}^{\prime}$ with the change of variable $z=\frac{1}{y}$ and $w=\frac{e^{x}}{x}$. Write an "xlinxFit" function that calls linefit to fit data to $y=\frac{x}{c_{1} x+c_{2} e^{x}}$.
(5) (18 points) Write a function betatrap that uses the Trapezoid rule to evaluate

$$
\beta(m ; n)=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x
$$

using N (which is also an input variable) panels.
(6) (18 points) Write down an octave function to find a solution to the differential equation

$$
y^{\prime}=e^{y-t}+y, y(0)=0
$$

at $\mathrm{t}=2$ using the stepsize h (which is a input variable for the function) following Runge-Kutta method.

