BACK PAPER: NUMERICAL COMPUTING

- (1) (6+6+6=18 points) Write down the output of the following commands in octave.
 - (a) x=[5 3 2]; A=diag(2*ones(1,4))+diag(ones(1,3),1)+diag(x,-1); disp(A(1:3,2:4));
 - (b) A=[2 1;4 3]; B=[1 0;0 1]+diag([4 5]); disp(A.*B); disp(A*B);
 - (c) c=[1 2 3 4]; r=polyval(c,-1); disp(r);
- (2) (5+6+7=18 points) Describe what the following commands in octave do:
 - (a) linspace
 - (b) chol
 - (c) ode45
- (3) (4+4+10=18 points) Write down a command or a short code to achieve the following goals:
 - (a) Display the plot of the function $f(x) = sin(x) + e^x$ for x between $-\pi$ and π .
 - (b) Create a $n \times 2$ random matrix.
 - (c) Given a $n \times 2$ matrix A, write a short code which will give a polynomial which interpolates the n points whose co-ordinates are given by the rows of A.
- (4) (10 points) The function $y = \frac{x}{c_1 x + c_2 e^x}$ can be transformed into a linear relationship $z = c'_1 w + c'_2$ with the change of variable $z = \frac{1}{y}$ and $w = \frac{e^x}{x}$. Write an "xlinxFit" function that calls linefit to fit data to $y = \frac{x}{c_1 x + c_2 e^x}$.
- (5) (18 points) Write a function betatrap that uses the Trapezoid rule to evaluate

$$\beta(m;n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx$$

using N (which is also an input variable) panels.

(6) (18 points) Write down an octave function to find a solution to the differential equation

$$y' = e^{y-t} + y, \ y(0) = 0$$

at t=2 using the stepsize h (which is a input variable for the function) following Runge-Kutta method.